

Precision Feedlot Surface Management

Precision Feedlot Surface Management Using EMI

Theoretical Basis for using EMI

Manure (salts) can be from 10 to 100 times more conductive than typical soil

05 04 2005

Develop Method using EMI for Managing the Feedlot Surface

Specific research objectives were:

- 1. Assess the accuracy of a RSSD, with a stratified random sampling (SRS) procedure for calibrating EMI/soil property regression equations.
- 2. Test the ability of a regression model estimated using a RSSD for evaluating spatial manure accumulation.
- 3. Evaluate feedlot surface data for any spatial manure accumulation structure.
- 4. Establish a methodology for measuring spatially variable chemical/physical constituents associated with manure accumulation on feedlot pen surfaces

Two Sampling Designs

EC_a Data with GPS Coordinates

Sampling Design

- 1. Stratified Random Sampling (SRS)
- 2. Response Surface Sampling Design (RSSD)

Sample Locations co-located w/EMI Cokriging reduces to MLR

Stratified Random Sampling (20 sites)

- Rank EC_a values from highest to lowest.
- Divided rank into 4 equal segments
- Random number generator to select 5 values from each segment.
- Use GPS coordinates to co-locate soil sample with EC_a value.

Response Surface Sampling Design (20 sites)

- Strategically pick sites to maximizes info on EC_a variation
- Evaluate spatial relationship to minimize auto-correlations
- Series of iterations to find the best set of sampling sites
- Use GPS coordinates to co-locate soil sample with EC_a value.

Stratified Random Sampling Design

Response Surface Sampling Design

Locating Sample Points Using GPS

Soil property correlation matrix, and soil property/EMI cross-correlation estimates.

Soil property correlation matrix (n = 40)									
	ln(Cl)	ln(Cl) TN TP							
ln(Cl)	1.000	0.898	0.924	0.913					
TN		1.000	0.985	0.987					
TP			1.000	0.978					
VS				1.000					
Soil property / H	EMI cross-corre	lation estimates ((n=40)						
	ln(Cl)	TN	TP	VS					
EMI	0.931	0.863	0.865	0.881					
ln(EMI)	0.966	0.924	0.930	0.937					

Objective 1: RSSD vs. SRS Sampling Design Scores

• D optimality (D_{opt}) is a measure of the expected precision of the regression model parameter estimates

Sampling Plan Sample Design Optimality Sc					
T		D_{opt}	V_{opt}	G_{max}	
	Response Surface Sampling Design (RSSD)	1.52 · 10-2	1.123	1.231	
ı	Stratified Random Sampling (SRS)	0.22 · 10-2	1.178	1.989	

Objective 1: RSSD vs. SRS Sampling Design Scores

- D optimality (D_{opt}) is a measure of the expected precision of the regression model parameter estimates
- V optimality (V_{opt}) is a measure of the expected average prediction error associated with the regression model predictions

	Sampling Plan	Sample Design Optimality Score				
T		D_{opt}	V_{opt}	G_{max}		
	Response Surface Sampling Design (RSSD)	1.52 · 10-2	1.123	1.231		
ı	Stratified Random Sampling (SRS)	$0.22 \cdot 10^{-2}$	1.178	1.989		

Objective 1: RSSD vs. SRS Sampling Design Scores

- D optimality (D_{opt}) is a measure of the expected precision of the regression model parameter estimates
- V optimality (V_{opt}) is a measure of the expected average prediction error associated with the regression model predictions
- G maximum (G_{max}) is a measures of the expected maximum prediction error of the regression model predictions.

Sampling Plan	Sample Desig	Sample Design Optimality Score				
	D_{opt}	V_{opt}	G_{max}			
Response Surface Sampling Design (RSSD)	1.52 · 10-2	1.123	1.231			
Stratified Random Sampling (SRS)	$0.22 \cdot 10^{-2}$	1.178	1.989			

Objective 2: RSSD Ability to Predict SRS Values

Quadratic regression model summary statistics and parameter estimates for each sampling design.

Variable	Design	\mathbb{R}^2	Root MSE	β_0 (se)	β_1 (se)	β_2 (se)
ln(Cl)	RSSD	0.953	0.104	1.389 (3.17)	1.650 (1.20)	-0.084 (0.11)
	SRS	0.937	0.086	1.796 (4.91)	1.501 (1.84)	-0.068 (0.17)
TN/1000	RSSD	0.928	1.84	-246.7 (55.5)	88.0 (21.0)	-7.29 (1.96)
	SRS	0.884	1.81	-276.0 (100.2)	97.9 (37.6)	-8.12 (3.52)
TP/1000	RSSD	0.948	0.472	-83.0 (14.3)	29.8 (5.39)	-2.50 (0.50)
	SRS	0.920	0.471	-87.9 (26.1)	31.1 (9.81)	-2.58 (0.92)
VS	RSSD	0.946	3.72	-528.2 (112.4)	186.9 (42.5)	-15.3 (3.97)
	SRS	0.882	4.40	-500.6 (243.8)	173.0 (91.6)	-13.7 (8.56)

Objective 2: RSSD Ability to Predict SRS Values (cont.)

RSSD samples were calibration data, SRS samples were independent validation sites.

	Composite F-test	Joint Prd F-test	Mean Prd t-test
Variable	F score (<i>P</i> >F)	F score (<i>P</i> >F)	t score (P > F)
ln(Cl)	1.98 (0.136)	0.86 (0.630)	2.14 (0.047)
TN	0.36 (0.785)	0.87 (0.618)	-0.49 (0.628)
TP	0.97 (0.420)	0.99 (0.516)	-0.72 (0.484)
VS	0.50 (0.682)	1.28 (0.307)	-0.48 (0.640)

 Composite F-test demonstrates parameter estimates for both sampling designs are equivalent.

Objective 2: RSSD Ability to Predict SRS Values (cont.)

Response surface sampling design (RSSD) samples used as calibration data, stratified random sampling (SRS) samples used as independent validation sites.

	Composite F-test	Joint Prd F-test	Mean Prd t-test
Variable	F score (<i>P</i> >F)	F score (<i>P</i> >F)	t score (P > F)
ln(Cl)	1.98 (0.136)	0.86 (0.630)	2.14 (0.047)
TN	0.36 (0.785)	0.87 (0.618)	-0.49 (0.628)
TP	0.97 (0.420)	0.99 (0.516)	-0.72 (0.484)
VS	0.50 (0.682)	1.28 (0.307)	-0.48 (0.640)

- Composite F-test demonstrates parameter estimates for both sampling designs are equivalent.
- Joint Prd. F-test demonstrates that RSSD can accurately predict SRS values

Objective 2: RSSD Ability to Predict SRS Values (cont.)

Response surface sampling design (RSSD) samples used as calibration data, stratified random sampling (SRS) samples used as independent validation sites.

	Composite F-test	Joint Prd F-test	Mean Prd t-test
Variable	F score (<i>P</i> >F)	F score $(P>F)$	t score (P > F)
ln(Cl)	1.98 (0.136)	0.86 (0.630)	2.14 (0.047)
TN	0.36 (0.785)	0.87 (0.618)	-0.49 (0.628)
TP	0.97 (0.420)	0.99 (0.516)	-0.72 (0.484)
VS	0.50 (0.682)	1.28 (0.307)	-0.48 (0.640)

- Composite F-test demonstrates parameter estimates for both sampling designs are equivalent.
- Joint Prd. F-test demonstrates that RSSD can accurately predict SRS values
- Mean Prd. T-test demonstrate means were unbiased for TN, TP, VS

Objective 3 & 4: Spatial Structure & Management Practices

Conclusions

- 1. Three different validation tests were used to assess the accuracy and reliability of the RSSD fitted model.
 - RSSD was found to be as good or better than SRS.
- 2. The excellent correlations between the PRP EMI signal data and the In(CI), TN, TP and VS soil properties.
 - Each of the four models was capable of explaining more than 90% of the sample variations.
 - EMI data can be effectively used to map spatially variable manure constituents in feedlot pens.
- Prediction maps show pen design effect on manure accumulation
- 4. This technique allow the development of precision management practices to mitigate environmental contamination environment.

Spatial Feedlot Manure Accumulation

ECa Data with GPS Coordinates

ESAP - RSSD

Sample Locations co-located w/EMI

Soil Core VS, TN, TP, CI, CO2, N20, CH4, VFA, Aromatics

ECa Data

ESAP - Calibrate

Calculate Models
Summary Statistics
Prediction Equations
Prediction Maps

05 18 2004

Using EMI to Measure Treatment Differences (Corn vs. WDGS)

Cattle Fed Corn-Based Diet **Concrete Apron** 40.5551 40.55505-10 40.555-40.55495-Latitude 40.5549 **Mound** 40.55485-40.5548-40.55475 6.8 6.6 40.5547 40.55465 -98.1702 -98.1703 -98.1701 Longitude

Cattle Fed WDGS-Based Diets

Small Area of Pen with Offending Emissions

570350

Questions

Percent surface area above or below a selected threshold level for each pen. Note mean values follow by different letter were significantly different by diet at the $p \le 0.1$ level.

Pen	n Diet		Acetate		Straight-chain VFA		Branched-chain VFA		Total VFA		Solids	
		<65	>65	<55	>55	<7.0	>7.0	<130	>130	<30	>30	
		mmol kg ⁻¹	%	%								
217	Corn	16.4	83.6	22.1	77.9	80.0	20.0	21.2	78.8	12.9	87.1	
218	Corn	60.4	39.6	55.5	44.5	73.5	26.5	64.9	35.1	72.4	27.6	
223	Corn	21.9	78.1	29.2	70.8	52.7	47.3	26.9	73.1	14.4	85.6	
224	Corn	54.5	45.6	63.6	36.4	76	24	60.9	39.1	41.8	58.2	
A	verage	38.3a	61.7a	42.6a	57.4a	70.6a	29.4a	43.5a	56.5a	35.4a	64.6a	
219	WDGS	66.6	33.4	79.0	21.0	57.8	42.2	75.6	24.4	53.1	46.9	
220	WDGS	100	0	60.3	39.7	37.4	62.6	92.2	7.8	83.3	16.7	
221	WDGS	43.4	56.6	75.7	24.3	41.3	58.7	59.2	40.8	59.9	40.1	
222	WDGS	64.9	35.1	84.7	15.3	38.4	61.6	76.0	24.0	63.2	36.8	
A	verage	68.7a	31.3a	74.9b	25.1b	43.7b	56.3b	75.8b	24.2b	64.9a	35.1a	
I	P-value	0.191	0.191	0.040	0.040	0.015	0.015	0.081	0.081	0.135	0.135	

Feedlot Survey Bushland, TX

